Tissue distribution and receptor-mediated clearance of anti-CD11a antibody in mice.

نویسندگان

  • Greg P Coffey
  • Judith A Fox
  • Susanne Pippig
  • Susan Palmieri
  • Barbara Reitz
  • Michelle Gonzales
  • Anahid Bakshi
  • Josette Padilla-Eagar
  • Paul J Fielder
چکیده

Efalizumab (Raptiva) is a humanized monoclonal antibody specific for CD11a, the alpha-chain component of the lymphocyte function-associated antigen 1. In humans, the rate of efalizumab elimination from serum was related to the level of CD11a cell surface expression. These data suggested a role for the CD11a receptor, itself, in efalizumab clearance. Recently, we conducted a series of in vitro studies that suggested a role for CD11a-expressing T cells in efalizumab clearance as mediated by cellular internalization and lysosome-mediated degradation (Coffey et al., 2004). To further study the mechanism of anti-CD11a clearance in vivo, we assessed the tissue distribution, cellular internalization, and subcellular localization of a rat anti-mouse CD11a monoclonal antibody in various tissues in mice. Anti-CD11a antibody primarily distributed to leukocytes and macrophages in the peripheral blood, spleen, and liver, with uptake in the lymph nodes and bone marrow after 72 h. At least a portion of the antibody was internalized and cleared by peripheral blood mononuclear cells, lymphocytes, and splenocytes in a time-dependent manner in vivo. Internalized antibody costained with LysoTracker Red, suggesting that it was transported to lysosomes for degradation. Together, these data suggest that one clearance mechanism for anti-CD11a antibody in vivo is via receptor-mediated internalization and lysosomal degradation by CD11a-expressing cells and tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dose dependent pharmacokinetics, tissue distribution, and anti-tumor efficacy of a humanized monoclonal antibody against DLL4 in mice

Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distrib...

متن کامل

Tissue Distribution of 125I-human Nonspecific Polyclonal IgG in Normal and Induced Inflammation Mice

Many different radiolabeled antibodies have been used for radioimmunotherapy and radioimmunoscintigraphy of human diseases in animal experiments. In order to study the in vivo tissue distribution of antibody, we labeled human nonspecific polyclonal IgG with Na125I using chloramine-T method. An animal model was developed by injecting turpentine in the posterior left thigh of Balb/c mice. Tissue ...

متن کامل

Tissue Distribution of 125I-human Nonspecific Polyclonal IgG in Normal and Induced Inflammation Mice

Many different radiolabeled antibodies have been used for radioimmunotherapy and radioimmunoscintigraphy of human diseases in animal experiments. In order to study the in vivo tissue distribution of antibody, we labeled human nonspecific polyclonal IgG with Na125I using chloramine-T method. An animal model was developed by injecting turpentine in the posterior left thigh of Balb/c mice. Tissue ...

متن کامل

Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody.

Antibodies directed against tumor associated antigens are being increasingly used for detection and treatment of cancers; however, there is an incomplete understanding of the physiological determinants of antibody pharmacokinetics and tumor distribution. The purpose of this study is to (a) compare the plasma pharmacokinetics of T84.66, a monoclonal anti-CEA antibody directed against tumor assoc...

متن کامل

Effect of nicotine on immobility time in mice

In the present study, the effects of different doses of nicotine on immobility time in mice were tested. Intraperitioneal administration of low doses of nicotine (0.025 mg/kg) decreased, but higher doses (0.8 and 1 mg/kg) increased immobility time. The anti-immobility response induced by low doses of nicotine was inhibited by high doses of the D2 receptor antagonist sulpiride, the central nicot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 33 5  شماره 

صفحات  -

تاریخ انتشار 2005